Rutgers University
 School of Engineering

Fall 2022
332:231 - Digital Logic Design
Sophocles J. Orfanidis
ECE Department
orfanidi@rutgers.edu

Unit 6 - Sequential circuits, latches, flip-flops

Course Topics

1. Introduction to DLD, Verilog HDL, MATLAB/Simulink
2. Number systems
3. Analysis and synthesis of combinational circuits
4. Decoders/encoders, multiplexers/demultiplexers
5. Arithmetic systems, comparators, adders, multipliers
6. Sequential circuits, latches, flip-flops (Wakerly, Ch. 9 \& 10)
7. Registers, shift registers, counters, LFSRs (Wakerly, Ch. 11)
8. Finite state machines, analysis and synthesis (Wakerly, Ch. 9)

Text: J. F. Wakerly, Digital Design Principles and Practices, 5/e, Pearson, 2018 additional references on Canvas Files > References

Sequential circuits (Wakerly, Ch. 9 \& 10)
Topics discussed are:
Finite state machines - Mealy/Moore
State-holding elements - bistable elements
SR latches / S'R' latches
D latches
D flip-flops
T flip-flops
JK flip-flops
Converting between flip-flop types

Unit-6 Contents:

1. Finite state machines - Mealy/Moore
2. State-holding elements - bistable elements
3. SR latch
4. $\mathrm{S}^{\prime} \mathrm{R}^{\prime}$ latch
5. D latch
6. D flip-flops
7. T flip-flops
8. JK flip-flops
9. Converting between flip-flop types
sequential circuits and finite state-machines are special cases of dynamic systems

In general, a system can be defined by specifying the I/O computational rule that determines the output signal $y(t)$ from the input signal $x(t)$.

The time variable t can be continuous or discrete. The system can be linear or non-linear, time-invariant or time-varying, and can be described by differential or difference equations.

State Machines

State-space realizations, also known as state-space models, have a very large number of applications in many diverse fields, such as,
digital logic design
differential equations for physical systems
system theory
electric circuits
linear systems
digital signal processing
control systems
communication systems
biomedical signal processing
geophysical signal processing
aerospace engineering
military systems
statistics and time series analysis
predictive analytics
econometrics and financial engineering

State Machines

State-space realizations are very powerful representations of systems (linear or nonlinear, time-invariant or not).

The system is described by a set of internal states at each time instant t, denoted for example by $Q(t)$, and these states are used to compute the current output $y(t)$ in terms of the current input $x(t)$, and then update the states to their next values, $Q(t+1)$, so that they can be used at time $t+1$ (or, more generally at, $t+\Delta t$).

In other words, the system's time evolution is described iteratively by a computational algorithm of the form,
for each time instant t, do:

$$
\begin{aligned}
& y(t)=G(x(t), Q(t)) \\
& Q(t+1)=F(x(t), Q(t))
\end{aligned}
$$

(compute output)
(update state)
[to get started, one needs to know the initial state, $Q(0)$, at $t=0$]

State Machines

For example, in going from time t to time $t+2$, one carries out the steps:
at time t,

$$
\begin{aligned}
& y(t)=G(x(t), Q(t)) \\
& Q(t+1)=F(x(t), Q(t))
\end{aligned}
$$

at time $t+1$,
$F()$ and $G()$ depend on application in DLD, F is referred to as next-state logic, or excitation logic and, G is referred to as output logic
at time $t+2$,

$$
\begin{aligned}
& y(t+2)=G(x(t+2), Q(t+2)) \\
& Q(t+3)=F(x+2), Q(t+2))
\end{aligned}
$$

from here on, we'll use the simplified notation,

$$
x_{t}, y_{t}, Q_{t}
$$

for

$$
x(t), y(t), Q(t)
$$

etc.

State Machines

It should be emphasized that the updated state Q_{t+1} is being computed at time t, and becomes available at time t, replacing Q_{t}, but it is saved until it is used later at time $t+1$.

The computations can be cast as a repetitive algorithm, in which the present state is overwritten by the next state.
initialize state Q (typically at $t=0$), then,
at each time t, do,

$$
\begin{aligned}
& y_{t}=G\left(x_{t}, Q\right) \\
& Q=F\left(x_{t}, Q\right)
\end{aligned}
$$

or,
at each time t, do,

$$
\begin{aligned}
& y_{t}=G\left(x_{t}, Q\right) \\
& Q_{\mathrm{next}}=F\left(x_{t}, Q\right) \\
& Q=Q_{\mathrm{next}}
\end{aligned}
$$

State Machines

DLD notation: we assume that time is discretized in units of 1 , which means one clock period, so that $t+1$ means one clock period ahead of t.

In DLD (essentially all) sequential circuits are synchronously driven by a clock, and the state changes occur during the rising edge of the clock period (or, alternatively - but less commonly - during the falling edge.)
clock period depends on application, e.g., Emona board has $10 \mu \mathrm{sec}$ period

State Machines

State machines in DLD fall into two general families:
Moore type: output equation depends only on Q, i.e., $y=G(Q)$
Mealy type: output equation depends on both x and Q, i.e., $y=G(x, Q)$

in general, one can have multiple inputs, multiple outputs (MIMO systems), and multiple states

State Machines - Moore

State Machines - Mealy

period $=t_{\text {per }}$
frequency $=1 / t_{\text {per }}$
duty cycle $=t_{H} / t_{\text {per }}$
state-holding elements bistable elements latches
what are state-holding elements?
how to load them?

> two stable states
> $\mathrm{Q}=1$ and $\mathrm{Q}=0$

state-holding elements bistable elements latches

two stable states - but how to load them?

state-holding elements bistable elements
latches
the state-loading problem is solved with SR latches, which provide external inputs to the bistable elements.

state-holding elements

 bistable elements latches
redrawn

normal
operation

$$
\text { set, } \mathrm{Q}=1 \text { state }
$$

$\mathrm{Q}=0 / 1$ before $\mathrm{Q}=1$ next
hold, $\mathrm{Q}=1$ state
$\mathrm{Q}=1 / 0$ before
$\mathrm{Q}=0$ next reset, $\mathrm{Q}=0$ state

$\mathrm{Q}=0$
hold, $\mathrm{Q}=0$ state

	S R Q	$\mathrm{Q}_{\text {next }}$
hold	$0 \quad 0 \quad \mathrm{Q}$	Q
reset	01 Q	0
set	10 Q	1
	11 Q	?

X	Y	NOR
0	0	1
0	1	0
1	0	0
1	1	0

	S	R	Q	$\mathrm{Q}_{\text {next }}$
	0	0	Q	Q
reset	0	1	Q	0
1	0	Q	1	
1	1	Q	$?$	

$\mathrm{R}=\mathrm{S}=1$ are not allowed because if R, S are de-asserted at exactly the same time, that is, $R=S=0$, then, the latch will enter into a metastable, race condition, with the $\mathrm{Q}, \mathrm{Q}^{\prime}$ outputs oscillating between the values 0,0 and 1,1 , as explained below.

$$
00 \rightarrow 11 \rightarrow 00 \rightarrow 11 \ldots
$$

$\mathrm{R}=\mathrm{S}=1$ are not allowed because if R, S are de-asserted at exactly the same time, that is, $\mathrm{R}=\mathrm{S}=0$, then, the latch will enter into a metastable, race condition, with the $\mathrm{Q}, \mathrm{Q}^{\prime}$ outputs oscillating between the values 0,0 and 1,1 , as seen above.

$$
00 \rightarrow 11 \rightarrow 00 \rightarrow 11 \ldots
$$

sequence of events

$\mathbf{a} \rightarrow \mathbf{b} \rightarrow \mathbf{c} \rightarrow \mathbf{d} \rightarrow \mathbf{e}$

$$
\text { set, } \mathrm{Q}=1 \text { state }
$$

abnormal operation
sequence of events

$$
\mathbf{a} \rightarrow \mathbf{b} \rightarrow \mathbf{c} \rightarrow \mathbf{d} \rightarrow \mathbf{e}
$$

simultnaneously de-asserting R,S

latch enters into a metastable, race condition, with the $\mathrm{Q}, \mathrm{Q}^{\prime}$ outputs oscillating between the values 0,0 and 1,1

$$
00 \rightarrow 11 \rightarrow 00 \rightarrow 11 \ldots
$$

NOR implementation

SR latch	characteristic table		
	S R Q	$\mathrm{Q}_{\text {next }}$	$\mathrm{Q}_{\text {next }}^{\prime}$
hold	00 Q	Q	Q ${ }^{\prime}$
reset	01 Q	0	1
set	10 Q	1	0
not allowed	11 Q	0	0

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{R}^{\prime} \mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}
$$

$$
\Longrightarrow \quad \mathrm{Q}_{\text {next }}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}
$$

SR latches - NOR and NAND realizations

NOR

$$
\begin{aligned}
& \text { using De Morgan duality theorem: } \\
& \mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \ldots)^{\prime}=\mathrm{F}_{\text {dual }}\left(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}, \ldots\right)
\end{aligned}
$$

state-holding elements

bistable elements
latches

redrawn

SR latch

NAND implementation

	S^{\prime}	R^{\prime}	Q	$\mathrm{Q}_{\text {next }}$	$\mathrm{Q}_{\text {next }}^{\prime}$
	not allowed	0	0	Q	1
active low \longrightarrow set	0	1	Q	1	0
active low \longrightarrow reset	1	0	Q	0	1
hold	1	1	Q	Q	Q^{\prime}
	characteristic table				

characteristic equation

$$
\begin{aligned}
& \mathrm{Q}_{\text {next }}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q} \\
& \mathrm{Q}_{\mathrm{next}}=\left(\mathrm{S}^{\prime}\left(\mathrm{R}^{\prime} \mathrm{Q}\right)^{\prime}\right)^{\prime}
\end{aligned}
$$

SR latch

characteristic table

	S^{\prime}	R^{\prime}	Q	$\mathrm{Q}_{\text {next }}$	$\mathrm{Q}_{\text {next }}^{\prime}$
not allowed	0	0	Q	1	1
set	0	1	Q	1	0
reset	1	0	Q	0	1
hold	1	1	Q	Q	Q^{\prime}

characteristic equation

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}
$$

same K-map as in the NOR case

SR latches - Summary

SR latch - with enable/control/clock signal - NOR version

	S R C	$\mathrm{Q}_{\text {next }}$	$Q^{\prime}{ }_{\text {next }}$
hold	X X X 0	Q	Q ${ }^{\prime}$
hold	$0 \quad 0 \quad 1$	Q	Q ${ }^{\prime}$
reset	$\begin{array}{llll}0 & 1 & 1\end{array}$	0	1
set	$1 \begin{array}{lll}1 & 0 & 1\end{array}$	1	0
not allowed	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	0	0

characteristic equation

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{CR}^{\prime} \mathrm{S}+\mathrm{C}^{\prime} \mathrm{Q}+\mathrm{R}^{\prime} \mathrm{Q}
$$

$$
\begin{aligned}
& R_{a}=C R \\
& S_{a}=C S \\
& Q_{n e x t}=R_{a}^{\prime} S_{a}+R_{a}^{\prime} Q
\end{aligned}
$$

SR latch - with enable/control/clock signal - NAND version

	S R C	$\mathrm{Q}_{\text {next }}$	$\mathrm{Q}^{\prime}{ }_{\text {next }}$
hold	$\mathrm{x} \times 0$	Q	Q'
hold	$0 \quad 0 \quad 1$	Q	Q'
reset	$\begin{array}{lll}0 & 1 & 1\end{array}$	0	1
set	$1 \begin{array}{lll}1 & 1\end{array}$	1	0
not allowed	111	1	1

characteristic equation
$\mathrm{Q}_{\text {next }}=\mathrm{C} \mathrm{S}+\left(\mathrm{C}^{\prime}+\mathrm{R}^{\prime}\right) \mathrm{Q}$

$$
\begin{aligned}
& \text { if } \mathrm{C}=1, \\
& \mathrm{Q}_{\mathrm{next}}=\mathrm{D} \\
& \text { if } \mathrm{C}=0, \\
& \mathrm{Q}_{\mathrm{next}}=\mathrm{Q}
\end{aligned}
$$

i.e., Q follows D while $\mathrm{C}=1$, otherwise Q remains unchanged

$$
\begin{aligned}
\mathrm{R}_{\mathrm{a}}= & \mathrm{C} \mathrm{D} \mathrm{D}^{\prime} \\
\mathrm{S}_{\mathrm{a}}= & \mathrm{CD} \\
\mathrm{Q}_{\mathrm{next}} & =\mathrm{R}_{\mathrm{a}}^{\prime} \mathrm{S}_{\mathrm{a}}+\mathrm{R}_{\mathrm{a}}^{\prime} \mathrm{Q} \\
& =\left(\mathrm{C} \mathrm{D}^{\prime}\right)^{\prime}(\mathrm{CD})+\left(\mathrm{CD}^{\prime}\right)^{\prime} \mathrm{Q} \\
& =\left(\mathrm{C}^{\prime}+\mathrm{D}\right)(\mathrm{CD})+\left(\mathrm{C}^{\prime}+\mathrm{D}\right) \mathrm{Q} \\
& =\mathrm{C}^{\prime} \mathrm{CD}+\mathrm{D} \mathrm{C} \mathrm{D}+\mathrm{C}^{\prime} \mathrm{Q}+\mathrm{D} \mathrm{Q} \\
& =\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{Q}+\mathrm{D} \mathrm{Q} \\
& =\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{Q} \quad \quad \text { (by consensus theorem) }
\end{aligned}
$$

NAND implementation

	characteristic table			
	D	C	Q	$\mathrm{Q}_{\text {next }}$
	hold Q	x	0	Q
follow D	O	1	Q	
follow D	1	1	Q	1

$$
\begin{aligned}
& \text { while } \mathrm{C}=1, \mathrm{Q} \text { follows } \mathrm{D} \\
& \text { while } \mathrm{C}=0, \mathrm{Q} \text { is unchanged }
\end{aligned}
$$

characteristic equation

$$
\begin{aligned}
& \mathrm{Q}_{\text {next }}=\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{Q} \quad \text { if } \mathrm{C}=1 \text {, } \\
& \mathrm{Q}_{\text {next }}=\mathrm{D} \\
& \text { if } \mathrm{C}=0 \text {, } \\
& \mathrm{Q}_{\text {next }}=\mathrm{Q} \\
& \begin{array}{l}
\mathrm{R}_{\mathrm{a}}=\mathrm{CD}^{\prime} \\
\mathrm{S}_{\mathrm{a}}=\mathrm{CD}
\end{array} \\
& \mathrm{Q}_{\text {next }}=\mathrm{S}_{\mathrm{a}}+\mathrm{R}_{\mathrm{a}}{ }^{\prime} \mathrm{Q} \\
& \uparrow \\
& \text { see p. } 29 \\
& \text { turning a } \mathrm{D} \text { latch into a } \mathrm{D} \text { flip-flop } \longrightarrow
\end{aligned}
$$

latches
 VS. flip-flops

D-latches are level-sensitive storage elements
D-flip-flops are edge-triggered storage elements

	D	C	$\mathrm{Q}_{\text {next }}$
hold Q	x	0	Q
follow D	0	1	0
follow D	1	1	1

D-latch
characteristic equation
level-sensitive
$\mathrm{Q}_{\text {next }}=\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{Q}$

D-flip-flop
characteristic equation edge-triggered
$\mathrm{Q}_{\mathrm{next}}=\mathrm{ED}+\mathrm{E}^{\prime} \mathrm{Q}$

characteristic equation

$$
\mathrm{Q}_{t+1}=\mathrm{E}_{t} \mathrm{D}_{t}+\mathrm{E}_{t}^{\prime} \mathrm{Q}_{t}= \begin{cases}\mathrm{D}_{t}, & \text { if } t \text { at edge } \\ \mathrm{Q}_{t}, & \text { if } t \text { not at edge }\end{cases}
$$

i.e., D flip-flop copies D to Q on the rising edge of the clock, and remembers Q at all other times

D flip-flop

edge-detector - generating an edge signal from the clock

DffLs.slx file on Canvas
flip-flops and clock are found in Simulink library under Simulink extras/flip flops

D flip-flop

positive-edge-triggered D flip-flop vs. D latch

D flip-flop

\%\% Dfflm.m - D flip-flop vs. D latch - on Canvas
\% run DffLs.slx first to generate structure S
$\mathrm{t}=\mathrm{S} . \mathrm{time}$
\% time
$P=$ S.data (: , 1) ; \% clock pulse
D $=$ S.data $(:, 2)$;
QL = S.data (: , 3) ;
\% D input
$Q F=S . d a t a(:, 4)$;
\% latch output
\% flip-flop output
set (0, 'DefaultAxesFontSize', 14);
figure;
subplot(4,1,1); stairs(t, P,'g-','linewidth',2);
xaxis $(0,8,0: 8)$; yaxis $(0,1.9,0: 1)$; ylabel ('clock')
subplot(4,1,2); stairs(t,D,'b-','linewidth',2); xaxis $(0,8,0: 8) ;$ yaxis $(0,1.9,0: 1) ; ~ y l a b e l\left(D^{\prime}\right) ; ~ g r i d$ subplot(4,1,3); stairs(t,QL,'m-','linewidth',2);
xaxis $(0,8,0: 8)$; yaxis $(0,1.9,0: 1)$; ylabel('QL') ; grid subplot (4,1,4); stairs(t,QF,'r-','linewidth',2); xaxis $(0,8,0: 8)$; yaxis (0,1.9,0:1) ; ylabel('QF') ; grid xlabel('\{\itt\}')

Emona lab 5 experiment - comparing D-latches with D-flip-flops

User: orfanidis2 - Uid: 3511

FSM 10
20
3
2
4
5

Capture
Help

D flip-flop

 positive-edge-triggered D flip-flop

See next page for an explanation of its operation with the help of the truth-table of an $\mathrm{S}^{\prime} \mathrm{R}^{\prime}$ latch. It will be explored further in the DLD lab (lab5).

When clock $=0$, the outputs of gates $\mathrm{b} \& \mathrm{c}$ are $\mathrm{P}_{\mathrm{b}}=\mathrm{P}_{\mathrm{c}}=1$, which maintains the output latch (gates e \& f) in its present state. In addition, $\mathrm{P}_{\mathrm{d}}=\mathrm{D}^{\prime}$ and $\mathrm{P}_{\mathrm{a}}=\mathrm{D}$.

When the clock changes to clock $=1$, then, the values of P_{a} and P_{d} are transmitted through gates b \& c to cause $\mathrm{P}_{\mathrm{b}}=\mathrm{D}^{\prime}$ and $\mathrm{P}_{\mathrm{c}}=\mathrm{D}$, thus, resulting in, $\mathrm{Q}=\mathrm{D}$ and $\mathrm{Q}^{\prime}=\mathrm{D}^{\prime}$.

After clock changes to 1, any further changes in D should not affect the output latch, as long as, clock $=1$. There are two possibilities:
(a) if $\mathrm{D}=0$ at the positive edge of the clock, then, $\mathrm{P}_{\mathrm{c}}=0$, keeping the output $\mathrm{P}_{\mathrm{d}}=1$, as long as, clock $=1$, regardless of the value of the D input, and maintaining $\mathrm{Q}=0=\mathrm{D}_{\text {edge }}$.
(b) if $\mathrm{D}=1$ at the positive edge of the clock, then, $\mathrm{P}_{\mathrm{b}}=0$, forcing the outputs, $\mathrm{P}_{\mathrm{a}}=1, \mathrm{P}_{\mathrm{c}}$ $=1$, regardless of the D input, and maintaining the output equal to $\mathrm{Q}=1=\mathrm{D}$ edge .

Therefore, the flip-flop ignores changes in the D input, while clock $=1$. Hence, the circuit behaves as a positive-edge-triggered flip-flop.

Emona lab 5 experiment - verifying the six-NAND implementation

D flip-flop

(A) MOTOROLA

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP

The SN54/74LS74A dual edge-triggered flip-flop utilizes Schottky TTL circuitry to produce high speed D-type flip-flops. Each flip-flop has individual clear and set inputs, and also complementary Q and Q outputs.
Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or the LOW level, the Dinput signal has no effect.

D flip-flop ICs

54LS74
74LS74
from Motorola, TI, Fairchild

SN54/74LS74A

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP LOW POWER SCHOTTKY

SN54ALS74A, SN54AS74A, SN74ALS74A, SN74AS74A DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOPS

WITH CLEAR AND PRESET

D flip-flop

D flip-flop ICs
54LS74
74LS74

from Motorola, TI, Fairchild

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/AEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J. and N packages.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\& Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

D flip-flop

positive-edge-triggered D flip-flop

 can also be constructed by cascading two D-latches, but driven by opposite clocks, see Wakerly, Sect. 10.2.4
(b)

(c)

when $\mathrm{CLK}=0, \mathrm{FF}_{1}$ is open and follows its input, D
when $\mathrm{CLK}=1, \mathrm{FF}_{1}$ is closed and its current output QM is transferred to FF_{2} 's output Q , and QM is prevented from changing until $\mathrm{CLK}=0$ again,
FF_{2} remains open while $\mathrm{CLK}=1$, but changes only at the rising edge of that interval because FF_{1} is closed and not changing during the rest of the interval,
so effectively, D is transferred to Q only at the rising edges $(0$ to 1) of the clock period and Q maintains its state during the rest of the clock period

D flip-flop

cascading two D-latches together, and tying their control signals to opposite clocks

see Wakerly, Fig.10-13 for a timing diagram

This implementation will be explored in lab5, but note however, that the former implementation that uses three SR-latches (p. 53) is slightly more efficient, since it requires six NAND gates instead of eight, and is used in commercially available D-flip-flop ICs (see p. 54-55).

D flip-flop

adding preset/clear inputs

D flip-flop

cascaded D latches: slight variation that uses a D latch followed by an SR latch

D flip-flop - timing parameters

$$
\begin{aligned}
& t_{\mathrm{su}}=\text { setup time } \\
& t_{\mathrm{h}}=\text { hold time } \\
& t_{\mathrm{Q}}=\text { clock-to- } \mathrm{Q} \text { delay } \\
& \text { all typically, } 1-20 \mathrm{~ns}
\end{aligned}
$$

D flip-flops and State Machines

D flip-flops and State Machines

D flip-flops are widely used for the implementation of finite-state machines. Their advantage is that the next states, $\mathrm{Q}^{\text {next }}$, are the excitation inputs to the flip-flops, i.e., $D=Q^{\text {next }}$. See next page for an alternative drawing.
feedback

D flip-flops and State Machines

multiple states

D flip-flops and State Machines - example with two states

feedback

other flip-flop types
SR flip-flops
T flip-flops
JK flip-flops
conversions between types
characteristic tables
characteristic equations
excitation tables
excitation equations
D to JK
JK to D
D to T
T to D
JK to T
T to JK
SR to JK
JK to SR

T flip-flop - constructed from a D flip-flop

T flip-flop - constructed from a D flip-flop

characteristic table

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{D}=\mathrm{T} \oplus \mathrm{Q} \quad \begin{aligned}
& 0 \oplus \mathrm{X}=\mathrm{X} \\
& 1 \oplus \mathrm{X}=\mathrm{X}^{\prime}
\end{aligned}
$$

	T	E	$\mathrm{Q}_{\text {next }}$
hold	0	\uparrow	Q
toggle	1	\uparrow	Q^{\prime}

T flip-flop
characteristic equation
$\mathrm{Q}_{\mathrm{next}}=\mathrm{D}=\mathrm{T}^{\prime} \mathrm{Q}+\mathrm{T} \mathrm{Q}^{\prime}=\mathrm{T} \oplus \mathrm{Q}$

T flip-flop - constructed from a D flip-flop

T flip-flop - constructed from a D flip-flop

Wakerly version

	characteristic table	
	T	$\mathrm{Q}_{\text {next }}$
hold	0	Q
toggle	1	Q^{\prime}

excitation table

Q	$\mathrm{Q}_{\text {next }}$	T
0	0	0
0	1	1
1	0	1
1	1	0

characteristic equation

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{T}^{\prime} \mathrm{Q}+\mathrm{T} \mathrm{Q}^{\prime}=\mathrm{T} \oplus \mathrm{Q}
$$

excitation equation

$$
\mathrm{T}=\mathrm{Q}_{\text {next }} \oplus \mathrm{Q}
$$

excitation tables are useful because we usually know Q and what $\mathrm{Q}_{\text {next }}$ should be, and we need to determine the proper inputs to the flip-flops

$$
\begin{aligned}
& \mathrm{T}=\mathrm{D} \oplus \mathrm{Q} \\
& \mathrm{Q}_{\mathrm{next}}=\mathrm{T} \oplus \mathrm{Q}=(\mathrm{D} \oplus \mathrm{Q}) \oplus \mathrm{Q}=\mathrm{D}
\end{aligned}
$$

JK flip-flop
positive-edge-triggered JK flip-flop, acts like an SR flip-flop, but toggling when $\mathrm{S}=\mathrm{R}=1$

JK flip-flop
characteristic equation

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{D}=\mathrm{J} \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}
$$

JK flip-flop clock edge signal

JK flip-flop
characteristic equation

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{J} \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}
$$

characteristic table

J	K	$\mathrm{Q}_{\text {next }}$
0	0	Q
0	1	0
1	0	1
1	1	Q^{\prime}

excitation table

Q	$\mathrm{Q}_{\text {next }}$	J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

characteristic equation

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{J} \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}
$$

JK flip-flop

characteristic table

J	K	$Q_{\text {next }}$
0	0	Q
0	1	0
1	0	1
1	1	Q^{\prime}

characteristic equation
characteristic table

$$
\mathrm{Q}_{\mathrm{next}}=\mathrm{J} \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}
$$

$$
\begin{aligned}
& \mathrm{J}=\mathrm{K}=\mathrm{T} \\
& \mathrm{Q}_{\mathrm{next}}=\mathrm{J} \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q} \\
& \mathrm{Q}_{\mathrm{next}}=\mathrm{T} \mathrm{Q}^{\prime}+\mathrm{T}^{\prime} \mathrm{Q}=\mathrm{T} \oplus \mathrm{Q}
\end{aligned}
$$

excitation table

$$
\begin{aligned}
& J=D \\
& K=D^{\prime} \\
& Q_{n e x t}=J^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}=\mathrm{D} Q^{\prime}+\mathrm{D} Q=D \\
& Q_{n e x t}=D
\end{aligned}
$$

flip-flop conversions - summary \& web links

$$
\begin{array}{ll}
\text { D to } \mathrm{JK}: & \mathrm{D}=\mathrm{JQ}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q} \\
\mathrm{JK} \text { to } \mathrm{D}: & \mathrm{J}=\mathrm{D}, \mathrm{~K}=\mathrm{D}^{\prime} \\
& \\
\mathrm{D} \text { to } \mathrm{T}: & \mathrm{D}=\mathrm{T} \oplus \mathrm{Q} \\
\mathrm{~T} \text { to } \mathrm{D}: & \mathrm{T}=\mathrm{D} \oplus \mathrm{Q} \\
\text { JK to } \mathrm{T}: & \mathrm{J}=\mathrm{K}=\mathrm{T} \\
\text { T to } \mathrm{JK}: & \mathrm{T}=\mathrm{JQ}^{\prime}+\mathrm{KQ} \\
& \\
\text { SR to } \mathrm{JK}: & \mathrm{S}=\mathrm{JQ}^{\prime}, \mathrm{R}=\mathrm{KQ} \\
\mathrm{JK} \text { to } \mathrm{SR}: & \mathrm{J}=\mathrm{S}, \mathrm{~K}=\mathrm{R}
\end{array}
$$

flip-flop conversions - part 1
flip-flop conversions - part 2
flip-flop conversions - part 3
flip-flop conversions - part 4
excitation tables are useful because we usually know what Q and $\mathrm{Q}_{\text {next }}$ should be, and wish to determine the proper inputs to the flip-flops

$\mathrm{Q}_{\text {next }}=\mathrm{D}$| Q | $\mathrm{Q}_{\text {next }}$ | D |
| :--- | :--- | :--- |
| | 0 0 0
 0 1 1
 1 0 1
 1 1 0 | |

flip-flops - summary Reference: A .F. Kana, DLD lectures (on Canvas)

