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Sequential circuits (Wakerly, Ch. 9 & 10)

Topics discussed are: 

Finite state machines – Mealy/Moore

State-holding elements – bistable elements

SR latches / SʹRʹ latches

D latches

D flip-flops

T flip-flops

JK flip-flops

Converting between flip-flop types



Unit-6 Contents:

1.  Finite state machines – Mealy/Moore

2.  State-holding elements – bistable elements

3.  SR latch

4.  SʹRʹ latch

5.  D latch

6.  D flip-flops

7.  T flip-flops

8.  JK flip-flops

9.  Converting between flip-flop types



sequential circuits and finite state-machines are special cases of 

dynamic systems

In general, a system can be defined by specifying the 

I/O computational rule that determines the output 

signal y(t) from the input signal x(t).

x(t) system y(t)

inputs outputs

The time variable t can be continuous or discrete. The 

system can be linear or non-linear, time-invariant or 

time-varying, and can be described by differential or 

difference equations. 



State Machines

State-space realizations, also known as state-space models, have a very 

large number of applications in many diverse fields, such as,

digital logic design

differential equations for physical systems

system theory

electric circuits

linear systems

digital signal processing

control systems

communication systems

biomedical signal processing

geophysical signal processing

aerospace engineering

military systems

statistics and time series analysis

predictive analytics

econometrics and financial engineering



State-space realizations are very powerful representations of systems 

(linear or nonlinear, time-invariant or not). 

The system is described by a set of internal states at each time instant t, 

denoted for example by Q(t), and these states are used to compute the 

current output y(t) in terms of the current input x(t), and then update 

the states to their next values, Q(t+1), so that they can be used at time 

t+1 (or, more generally at, t+t). 

In other words, the system’s time evolution is described iteratively by a 

computational algorithm of the form,

for each time instant t, do:

y(t) = f(x(t), Q(t)) (compute output)

Q(t+1) = g(x(t), Q(t)) (update state)

[ to get started, one needs to know the initial state, Q(0), at t=0 ]

for each time instant t, do:

y(t) = G(x(t), Q(t))

Q(t+1) = F(x(t), Q(t))

State Machines



For example, in going from time t to time t+2, one carries out the steps:

at time t,

y(t) = G(x(t), Q(t))

Q(t+1) = F(x(t), Q(t))

at time t+1,

y(t+1) = G(x(t+1), Q(t+1))

Q(t+2) = F(x(t+1), Q(t+1))

at time t+2,

y(t+2) = G(x(t+2), Q(t+2))

Q(t+3) = F(x+2), Q(t+2))

etc.

from here on, we’ll use the

simplified notation,

xt , yt , Qt
for

x(t), y(t), Q(t)

F( ) and G( ) depend on application

in DLD, F is referred to as 

next-state logic, or excitation logic

and, G is referred to as output logic 

State Machines



It should be emphasized that the updated state Qt+1 is being computed 

at time t, and becomes available at time t, replacing Qt , but it is saved 

until it is used later at time t+1.

The computations can be cast as a repetitive algorithm, in which the 

present state is overwritten by the next state.

initialize state Q (typically at t=0), then,

or,

State Machines

at each time t, do,

yt= G(xt, Q)    

Qnext = F(xt, Q)

Q = Qnext

at each time t, do,

yt = G(xt, Q)    

Q = F(xt, Q)



DLD notation: we assume that time is discretized in units of 1, which 

means one clock period, so that t+1 means one clock period ahead of t.

In DLD (essentially all) sequential circuits are synchronously driven by 

a clock, and the state changes occur during the rising edge of the clock 

period (or, alternatively - but less commonly - during the falling edge.)

rising edge

falling edge

clock duty cycles 

are usually, 50%

clock period depends on application, 

e.g., Emona board has 10 μsec period

State Machines

t



for each time instant t, do:

yt = G(xt, Qt)              

Qt+1 = F(xt, Qt)

y = G(x, Q)              

Qnext = F(x, Q)

State machines in DLD fall into two general families:

Moore type:  output equation depends only on Q, i.e.,  y = G(Q)

Mealy type:  output equation depends on both x and Q, i.e.,  y = G(x, Q)

simplified notation

changes occur at 

clock rising edges

State Machines

in general, one can have multiple inputs, multiple 

outputs (MIMO systems), and multiple states



xt yt

QtQt+1

yt = G(Qt)

Qt+1 = F(xt , Qt)

t

e.g.,  edge-triggered D-flip-flops

State Machines – Moore

s



xt yt

QtQt+1

t

State Machines – Mealy

s

e.g.,  edge-triggered D-flip-flops

yt = G(xt , Qt)

Qt+1 = F(xt , Qt)



two stable states

Q=1 and Q=0

Q Qʹ

state-holding elements

bistable elements

latches

Q

Q=1 Qʹ=0 Q=1 Q=0 Qʹ=1 Q=0

what are state-holding elements? 

how to load them?



two stable states  - but how to load them?

Q = 1

Qʹ = 0

Q = 0

Qʹ = 1

Q

Qʹ

state-holding elements

bistable elements

latches



state-holding elements

bistable elements

latches

the state-loading problem is solved with 

SR latches, which provide external inputs 

to the bistable elements.

Q Qʹ Q

R

S

Q(reset)

(set)
Qʹ

Q



state-holding elements

bistable elements

latches

R

S

Q

Qʹ

Q

R

S

Q

Qʹ

redrawn

SR-latch

R

S

Qʹ

Q

NOR version



R=0

S=1

Q=0/1

Q=1

R=0

S=0

Q=1

Q=1

R=1

S=0

Q=1/0

Q=0

Q=0/1  before 

Q=1  next

Q=1  before 

Q=1  next

Q=1/0  before 

Q=0  next

Qʹ=0

Qʹ=0

Qʹ=0/1

Qʹ=1

set, Q=1 state

hold, Q=1 state

reset, Q=0 state

R=0

S=0 Qʹ=1

Q=0

Q=0

Q=0  before 

Q=0  next

hold, Q=0 state

normal

operation

S   R   Q     Qnext

0   0    Q      Q

0   1    Q       0

1   0    Q       1

1   1    Q       ?  

hold 

reset

set

X   Y    NOR

0    0        1

0    1        0

1    0        0

1    1        0



R=1

S=1 Qʹ=0

Q before

Q=any, before 

Q=0  next

not allowed, Q=0 and Qʹ = 0, 

i.e., Qʹ is not the inverse of Q 

abnormal

operation

R=S=1 are not allowed because if R,S are de-asserted at exactly the same time, 

that is, R=S=0, then, the latch will enter into a metastable, race condition, with 

the Q, Qʹ outputs oscillating between the values 0,0 and 1,1, as explained below.

R

S

QN

Q

0 0  → 1 1→ 0 0 → 1 1 . . .

Q=0

S  R  Q    Qnext

0  0   Q     Q

0  1   Q      0

1  0   Q      1

1  1   Q      ?  

hold 

reset

set



not allowed, Q=0 and Qʹ = 0 

abnormal

operation

R=S=1 are not allowed because if R,S are de-asserted at exactly the same time, 

that is, R=S=0, then, the latch will enter into a metastable, race condition, with 

the Q, Qʹ outputs oscillating between the values 0,0 and 1,1, as seen above.

0 0  → 1 1→ 0 0 → 1 1 . . .

race condition

R=1

S=1

Q = 0

Qʹ = 0

Q = 0,1,0,1, …

Qʹ = 0,1,0,1, 

…

R=0

S=0

R

S

Qʹ

Q

simultnaneously de-asserting R,S

Qʹ

Q

hold 

reset



inactive stable state

hold Q and Qʹ

normal

operation

R=0

S=0

Q

Qʹ 

R=0

S=1

R=0

S=0

Q  before 

Q=1  next

set, Q=1 state

Qʹ  before 

Qʹ =0  nextba

c

d

e

Q=1  before 

Q=1  next

Qʹ =0  before 

Qʹ =0  next

sequence of events

a → b → c → d → e 

hold, Q=1 state

a

b

b

c

d

e

hold 

reset



normal

operation

R=1

S=0

R=0

S=0

hold, Q=0 state

b

c

d

e

reset, Q=0 state

Q=1  before 

Q=0  next

Qʹ =0  before 

Qʹ =1  next

a b

c

c

d

e

e

Q=0  before 

Q=0  next

Qʹ =1  before 

Qʹ =1  next

a

d

R=0

S=1

Q=0  before 

Q=1  next

set, Q=1 state

Qʹ=1  before 

Qʹ =0  nextba

c

d

e

hold 

reset

sequence of events

a → b → c → d → e 



abnormal

operation

R=1

S=1

Q=1  before 

Q=0  next

Qʹ =0  before 

Qʹ =0  next

a b

c

c

d

e

e
not allowed, Q=0 and Qʹ = 0 

R=0

S=0

b

c

c

b

Q=0  before 

Q=1  next

Q=0  next, etc

Qʹ =0  before 

Qʹ =1  next

Qʹ =0  next, etc

a

c

simultnaneously de-asserting R,S

a

sequence of events

a → b → c b

latch enters into a metastable, race condition, with the Q, Qʹ outputs 

oscillating between the values 0,0 and 1,1

0 0  → 1 1→ 0 0 → 1 1 . . .

hold 

reset

sequence of events

a → b → c → d → e 



SR latch

S   R   Q      Qnext Qʹnext

0   0   Q       Q Qʹ           

0   1   Q        0         1

1   0   Q        1         0

1   1   Q        0         0

hold 

reset

set

not allowed

NOR implementation

Qnext = Rʹ S + Rʹ Q

characteristic equation

Qnext = S + Rʹ Q

but with these as “don’t cares”

R

S

Qʹ

Q

R

S

Q

Qʹ

characteristic table



S   R   Q      Qnext Qʹnext

0   0   Q       Q Qʹ           

0   1   Q        0         1

1   0   Q        1         0

1   1   Q        0         0

hold 

reset

set

not allowed

Qnext = Rʹ S + Rʹ Q

characteristic equation

Qnext = S + Rʹ Q

if treated as “don’t cares”

Q 00 01 11 10

0

1

SR

1 x

x

1

1

characteristic table
SR latch



SR latch

S

R

Q

Qʹ

t0 t1 t2 t3 t4 t5 t6 t7 t8 t

not allowed

R

S

Q

Qʹ

set hold reset hold set hold

indeterminate,

race condition

R

S

Qʹ

Q

S   R  Q     Qnext Qʹnext

0   0   Q     Q Qʹ           

0   1   Q      0        1

1   0   Q      1        0

1   1   Q      0        0

simultnaneously

de-asserted

0

0

0

0



SR latches – NOR and NAND realizations

R

S

Q
Qʹ

Q

Rʹ

Sʹ
Q

Qʹ

Qʹ

using De Morgan duality theorem:

F(X,Y, Z, …) ʹ  =  Fdual (Xʹ,Yʹ, Zʹ , …)

NAND

NOR



state-holding elements

bistable elements

latches

redrawn

Rʹ

Sʹ
Q

Qʹ

Qʹ

Q

Qʹ

Sʹ

Rʹ

SR latch

or

SʹRʹ latch



Sʹ   Rʹ   Q      Qnext Qʹnext

0    0    Q        1         1

0    1    Q        1         0

1    0    Q        0         1

1    1    Q        Q Qʹ

not allowed 

set

reset

hold

SR latch
NAND implementation

Rʹ

Sʹ

Qʹ

Q

Qnext = S + Rʹ Q

Qnext  = ( Sʹ (Rʹ Q)ʹ )ʹ 

characteristic equation

Q

Qʹ

Sʹ

Rʹ

characteristic table

active low

active low

active low



Qnext = S + Rʹ Q

Q 00 01 11 10

0

1

SR

1 1

1

1

1

Sʹ   Rʹ   Q       Qnext Qʹnext

0    0    Q         1         1

0    1    Q         1         0

1    0    Q         0         1

1    1    Q         Q Qʹ

not allowed 

set

reset

hold

Qnext = S + Rʹ Q 

characteristic equation

SR latch

same K-map as in the NOR case

characteristic table



SR latches  - Summary

NANDNOR

S   R   Q     Qnext Qʹnext

0   0   Q      Q Qʹ           

0   1   Q       0         1

1   0   Q       1         0

1   1   Q       0         0

Sʹ Rʹ Q     Qnext Qʹnext

0    0    Q        1       1

0    1    Q        1       0

1    0    Q        0       1

1    1    Q        Q Qʹ 

Q

Qʹ

Sʹ

Rʹ

R

S

Q

Qʹ

characteristic tables – in both cases, set means Q=1, reset, Q=0

active high

active low

hold

reset

set

xx

xx

set

reset

hold

S R Q   

1  1  Q    

1  0  Q    1        0

0  1  Q    0        1

0  0  Q    



SR latch – with enable/control/clock signal – NOR version 

S  R  C      Qnext Qʹnext

x   x 0       Q        Qʹ           

0   0   1       Q        Qʹ           

0   1   1       0         1

1   0   1       1         0

1   1   1       0         0

hold

hold 

reset

set

not allowed

Qnext = C Rʹ S + Cʹ Q + Rʹ Q

characteristic equation

Ra = C R

Sa = C S

Qnext = Raʹ Sa + Raʹ Q

R

S

Q

Qʹ

C

Ra

Sa

characteristic table



S  R  C      Qnext Qʹnext

x   x 0       Q        Qʹ           

0   0   1       Q        Qʹ           

0   1   1       0         1

1   0   1       1         0

1   1   1       1         1

hold

hold 

reset

set

not allowed

characteristic table

Q

Qʹ

C

Saʹ

Raʹ

S

R

SR latch – with enable/control/clock signal – NAND version 

Qnext = C S + (Cʹ + Rʹ )Q

characteristic equation

S R Q   

1  1  Q    

1  0  Q    1        0

0  1  Q    0        1

0  0  Q    



hold Q

follow D 

follow D

Qnext = C D + Cʹ Q

characteristic equation

Ra = C Dʹ

Sa = C D

Qnext = Raʹ Sa + Raʹ Q

if  C=1,

Qnext = D

if  C=0,

Qnext = Q

D latch

D
Q

Qʹ

C

Ra

Sa

i.e., Q follows D while C=1, otherwise Q remains unchanged 

characteristic table

NOR implementation

R

S

D  C  Q      Qnext

x   0   Q        Q                 

0   1   Q        0                  

1   1   Q        1         



Ra = C Dʹ

Sa = C D

Qnext = Raʹ Sa + Raʹ Q

= (C Dʹ)ʹ (CD)  + (C Dʹ)ʹ Q 

= (Cʹ + D) (CD)  + (Cʹ + D) Q 

= Cʹ CD + D C D  + Cʹ Q + D Q

= C D + Cʹ Q + D Q

=  C D + Cʹ Q                ( by consensus theorem)

D latch



D latch

D  C  Q      Qnext

x   0   Q        Q                 

0   1   Q        0                  

1   1   Q        1         

hold Q

follow D 

follow D

Qnext = C D + Cʹ Q

characteristic equation

Ra = C Dʹ

Sa = C D

Qnext = Sa + Raʹ Q

NAND implementation

if  C=1,

Qnext = D

if  C=0,

Qnext = Q

turning a D latch into a D flip-flop

D
Q

Qʹ

C

Saʹ

Raʹ

characteristic table

while C=1, Q follows D 

while C=0, Q is unchanged

see p.29



D-latches are level-sensitive storage elements

D-flip-flops are edge-triggered storage elements

D   E Qnext   

x              Q

0               0                  

1               1          

hold Q

follow D 

follow D

Qnext = E D + Eʹ Q

D-flip-flop

characteristic equation

edge-triggered

D  C       Qnext

x   0         Q                 

0   1          0                  

1   1          1         

hold Q

follow D 

follow D

D-latch

characteristic equation

level-sensitive

clock

t

Ct Et

Qnext = C D + Cʹ Q

latches

vs.

flip-flops

rising-edge signal



E

clock

rising edges

positive-edge-triggered 

D flip-flop

Dt Et Qt+1   

x                 Qt

0                  0                  

1                  1         

hold Q

follow D 

follow D

characteristic equation

edge signal

D
Q

Qʹ

Dt ,  if t at edge               

Qt+1 = Et Dt + Etʹ Qt =  

Qt ,  if t not at edge 

D flip-flop

>

D

Qʹ

Q

clock

i.e., D flip-flop copies D to Q on the rising edge 

of the clock, and remembers Q at all other times

characteristic table



edge-detector – generating an edge signal from the clockD flip-flop

clock, C

narrow pulses

rising edges

Cʹdel

small delay

Cʹdel

C

C E, edge signal

E





clock

rising edges   



clock

D

Q

Q

D-latch

D-flip-flop

Clk

D

Qʹ

Q

>

D

Qʹ

Q

D

clock

D-latch

D-flip-flop

t1 t1+Tclock
t

positive-edge-triggered 

clock level clock edge 

level-sensitive 

latches

vs.

flip-flops

ON ON ON
OFF OFF

x   0       Q                 

0   1        0                  

1   1        1         

t1+2Tclock

of the 
for the flip

input variations

are ignored 

between clock

rising edges

for the latch,

input variations

are applied only

when clock is ON, 

and QL output is 

preserved while 

clock is OFF



positive-edge-triggered  D flip-flop vs. D latchD flip-flop

of the 

for the flip

input variations

are ignored 

between clock

rising edges

for the latch,

input variations

are applied only

when clock is ON, 

and QL output is 

preserved while 

clock is OFF

flip-flops and clock are found in Simulink library under Simulink extras/flip flops

DffLs.slx file on Canvas



D flip-flop positive-edge-triggered  D flip-flop vs. D latch

rising clock edges

of the 

for the flip

input variations

are ignored 

between clock

rising edges

for the latch,

input variations

are applied only

when clock is ON, 

and QL output is 

preserved while 

clock is OFF



D flip-flop positive-edge-triggered  D flip-flop vs. D latch

clock

D input

Q-latch

Q-flip-flop

clock edges

of the 

for the flip

input variations

are ignored 

between clock

rising edges

for the latch,

input variations

are applied only

when clock is ON, 

and QL output is 

preserved while 

clock is OFF



0 1 2 3 4 5 6 7 8
0

1

cl
o
ck

0 1 2 3 4 5 6 7 8
0

1D

0 1 2 3 4 5 6 7 8
0

1

Q
L

0 1 2 3 4 5 6 7 8
0

1

Q
F

t

D flip-flop

positive clock edges

for the flip-flop,

input variations

are ignored 

between clock

rising edges

Dt ,  if t at edge               

Qt+1 = 

Qt ,  if t not at edge 

for the latch,

input variations

are applied only

when clock is ON, 

and QL output is 

preserved while 

clock is OFF

MATLAB code

x   0       Q                 

0   1        0                  

1   1        1         



D flip-flop

%% DffLm.m - D flip-flop vs. D latch - on Canvas

%  run DffLs.slx first to generate structure S

t = S.time;          % time

P = S.data(:,1);     % clock pulse

D = S.data(:,2);     % D input

QL = S.data(:,3);    % latch output

QF = S.data(:,4);    % flip-flop output

set(0,'DefaultAxesFontSize',14);

figure;

subplot(4,1,1); stairs(t,P,'g-','linewidth',2); 

xaxis(0,8,0:8); yaxis(0,1.9,0:1); ylabel('clock')

subplot(4,1,2); stairs(t,D,'b-','linewidth',2); 

xaxis(0,8,0:8); yaxis(0,1.9,0:1); ylabel('D'); grid

subplot(4,1,3); stairs(t,QL,'m-','linewidth',2); 

xaxis(0,8,0:8); yaxis(0,1.9,0:1); ylabel('QL'); grid

subplot(4,1,4); stairs(t,QF,'r-','linewidth',2); 

xaxis(0,8,0:8); yaxis(0,1.9,0:1); ylabel('QF'); grid

xlabel('{\itt}')



Clk

D

Qʹ

Q

>

D

Qʹ

Q

D

clock

Emona lab 5 experiment – comparing D-latches with D-flip-flops

D-latch

level-sensitive

D-flip-flop

positive-edge-triggered

D
Q

Qʹ

C

Saʹ

Raʹ



start tracing outputs at these time instants

D-latch



positive-edge-triggered D flip-flop

Q

Qʹ

D

clock

D flip-flop



See next page for an explanation of its operation with 

the help of the truth-table of an SʹRʹ latch. It will be 

explored further in the DLD lab (lab5).

Q

Qʹ

D

clock

Pb

Pc

Pa

Pd

a

b

c

d

e

f

Sʹ

Rʹ



When clock = 0, the outputs of gates b & c are Pb = Pc = 1, which maintains the output 

latch (gates e & f) in its present state. In addition, Pd = Dʹ and Pa = D.

When the clock changes to clock = 1, then, the values of Pa and Pd are transmitted 

through gates b & c to cause Pb = Dʹ and Pc = D, thus, resulting in, Q = D and Qʹ = Dʹ. 

After clock changes to 1, any further changes in D should not affect the output latch, as 

long as, clock = 1. There are two possibilities: 

(a)  if  D = 0 at the positive edge of the clock, then, Pc = 0, keeping the output Pd = 1, as 

long as, clock = 1, regardless of the value of the D input, and maintaining Q = 0 = Dedge.

(b)  if  D = 1 at the positive edge of the clock, then, Pb = 0, forcing the outputs, Pa = 1, Pc
= 1, regardless of the D input, and maintaining the output equal to Q = 1 = Dedge.

Therefore, the flip-flop ignores changes in the D input, while clock = 1. Hence, the circuit 

behaves as a positive-edge-triggered flip-flop.

Sʹ Rʹ Q    Qnext Qʹnext

0    0    Q       1         1

0    1    Q       1         0

1    0    Q       0         1

1    1    Q       Q Qʹ 

Q

Qʹ

Sʹ

Rʹ



Emona lab 5 experiment – verifying the six-NAND implementation

Q

Qʹ

D

clock



start tracing outputs at these time instants



positive-edge-triggered D flip-flop – with preset/clear

Q

Qʹ

D

clock

clearʹ

presetʹ preset and clear are

active-low

>

D

Qʹ

Q

clearʹ

presetʹ

D flip-flop



D flip-flop

D flip-flop ICs

54LS74

74LS74

from Motorola, 

TI, Fairchild



D flip-flop

D flip-flop ICs

54LS74

74LS74

from Motorola, 

TI, Fairchild



positive-edge-triggered D flip-flop

can also be constructed by cascading two D-latches,

but driven by opposite clocks, see Wakerly, Sect. 10.2.4

when CLK = 0, FF1 is open and follows its input, D

when CLK = 1, FF1 is closed and its current output QM is transferred to FF2’s 

output Q, and QM is prevented from changing until CLK=0 again,  

FF2 remains open while CLK = 1, but changes only at the rising edge of that 

interval because FF1 is closed and not changing during the rest of the interval,

so effectively, D is transferred to Q only at the rising edges (0 to 1) of the 

clock period and Q maintains its state during the rest of the clock period

FF1 FF2

D flip-flop



D Q

Qʹ

C

D
Q

Qʹ

C

cascading two D-latches together, and tying 

their control signals to opposite clocks

D flip-flop

clock



D

Q

Qʹ

FF1 FF2

clock

This implementation will be explored in lab5, but note however, that the former 

implementation that uses three SR-latches (p. 53) is slightly more efficient, 

since it requires six NAND gates instead of eight, and is used in commercially 

available D-flip-flop ICs (see p. 54-55).

D flip-flop cascaded D latches

Q2

Q1

hold 1

open 2

open 1

hold 2

see Wakerly, Fig.10-13 for a timing diagram



start tracing outputs at these time instants

D

Q2

Q

Q

Q2

Q1



start tracing outputs at these time instants

D

Q2

hold 1

open 2

open 1

hold 2

hold 1

open 2

open 1

hold 2

hold 1

open 2

open 1

hold 2

hold 1

open 2

open 1

hold 2

hold 1

open 2

Q1

open 1

hold 2

Q2

Q1

Q1

edges



D flip-flop

D

Q

Qʹ

clock

clearʹ

presetʹ

adding preset/clear inputs

>

D

Qʹ

Q

clearʹ

presetʹ
preset and clear are active-low

presetʹ = 0, sets  Q = 1

clearʹ = 0,   sets  Q = 0

presetʹ = 1,  has no effect

clearʹ = 1,    has no effect



D flip-flop

D
Q

Qʹ

clock

clearʹ

presetʹ

cascaded D latches: slight variation that uses a 

D latch followed by an SR latch 

>

D

Qʹ

Q

clearʹ

presetʹ
preset and clear are active-low

presetʹ = 0, sets  Q = 1

clearʹ = 0,   sets  Q = 0

presetʹ = 1,  has no effect

clearʹ = 1,    has no effect



D flip-flop  - timing parameters

D Q

Qʹclock >

D

Qʹ

Q

clearʹ

presetʹ

clock

D

Q

tsu th

tQ

tsu th

tQ

tsu = setup time

th = hold time

tQ = clock-to-Q delay

all typically, 1-20 ns

clock edge 



xt yt

QtQt+1

t

s

edge-triggered D-flip-flops

yt = G(xt , Qt)

Qt+1 = F(xt , Qt)

D flip-flops and State Machines  



D flip-flops are widely used for the implementation of finite-state machines. 

Their advantage is that the next states, Qnext, are the excitation inputs to the 

flip-flops, i.e., D = Qnext . See next page for an alternative drawing.

D            Q

flip-flops
Qnext

Q

X

clock

Y
inputs outputs

next-state

logic

& 

output

networks

present

states

feedback

>

D flip-flops and State Machines  

multiple flip-flops

multiple states

multiple inputs and outputs

D = Qnext



D            Q
D = Qnext Q

X

clock

Y
inputs outputs

next-state

logic

& 

output

networks

states

feedback

Q Qnext

>

D flip-flops and State Machines  

multiple flip-flops

multiple states

multiple inputs and outputs

Qʹ

flip-flops



D1 Q1
Q1

X

clock

Y
inputs outputs

feedback

Q1 Q1
next

>

D flip-flops and State Machines – example with two states  

Q1ʹ

D2 Q2

> Q2ʹ

flip-flops

D1 = Q1
next

D2 = Q2
next

Q2

Q2

Q2
next

next-state

logic

& 

output

networks



other flip-flop types

SR flip-flops

T flip-flops

JK flip-flops

conversions between types

characteristic tables

characteristic equations

excitation tables

excitation equations

D to JK

JK to D

D to T

T to D

JK to T

T to JK

SR to JK

JK to SR

explored in recitations



T flip-flop – constructed from a D flip-flop

>

D

Qʹ

Q

T

clock

Qʹ

Q

T flip-flop

characteristic equation

XOR
T E Qnext

0              Q

1              Qʹtoggle

hold
Qnext= D = Tʹ Q + T Qʹ = T  Q



T

clock >

D

Qʹ

Q

Qʹ

Q

>

T

Qʹ

Q

Qnext= D = Tʹ Q + T Qʹ = T  Q

T flip-flop

characteristic equation

clock

0  X = X

1  X = Xʹ
Qnext = D = T  Q

T flip-flop – constructed from a D flip-flop

T E Qnext

0              Q

1              Qʹtoggle

hold

characteristic table



>

D

Qʹ

Q
T

clock Qʹ

Q

T

clock 

Q

toggle toggle toggle

0  X = X

1  X = Xʹ
Qnext = D = T  Q

T flip-flop – constructed from a D flip-flop



Wakerly version

T

clock

T flip-flop – constructed from a D flip-flop



T flip-flop

T         Qnext   

0          Q

1          Qʹ

Qnext = Tʹ Q + T Qʹ = T  Q

characteristic equation

>

T

Qʹ

Q

characteristic table
Q    Qnext      T

0     0          0

0     1          1

1     0          1

1     1          0

T = Qnext  Q

excitation equation

excitation table

clock

excitation tables are useful because we usually know Q and what Qnext
should be, and we need to determine the proper inputs to the flip-flops

toggle

hold



T flip-flop

D

clock >

T

Qʹ

Q

Qʹ

Q

converting a T flip-flop to a D flip-flop

T = D  Q 

Qnext = T  Q = (D  Q)  Q = D  



JK flip-flop

>

D

Qʹ

Q

K

clock

Qʹ

Q

Qnext= D = J Qʹ + Kʹ Q

JK flip-flop

characteristic equation

J

positive-edge-triggered JK flip-flop, 

acts like an SR flip-flop, but toggling when S=R=1

>

J

Qʹ

Q

K

clock

ʹ           



JK flip-flop

JK flip-flop

characteristic equation

J    K      E Qnext

x    x Q                 

0    0                   Q                   

0    1                    0 

1    0                    1         

1    1                    Qʹ

hold

hold 

reset

set

toggle

clock edge signal

hold                  set                  reset               toggle

J

K 

clock

Q

ʹ           

Qnext = J Qʹ + Kʹ Q



JK flip-flop

characteristic equation

J   K        Qnext

0    0         Q                   

0    1         0 

1    0         1         

1    1         Qʹ

Qnext = J Qʹ + Kʹ Q

>

J

Qʹ

Q

K

characteristic table

Q   Qnext       J    K

0    0          0   x

0    1          1   x

1    0          x   1

1    1          x   0

excitation table

clock



JK flip-flop

characteristic equation

Qnext = J Qʹ + Kʹ Q

>

J

Qʹ

Q

K

clock

J   K   Q     Qnext

0   0   0          0

0   0   1          1

0   1   0          0

0   1   1          0

1   0   0          1

1   0   1          1

1   1   0          1

1   1   1          0

Q   Qnext J    K

0    0          0   x

0    1          1   x

1    0          x   1

1    1          x   0

excitation table

J   K        Qnext

0    0         Q                   

0    1         0 

1    0         1         

1    1         Qʹ

characteristic table

characteristic table



JK flip-flop

J = K = T

Qnext = J Qʹ + Kʹ Q

Qnext = T Qʹ + Tʹ Q = T  Q 

>

J

Qʹ

Q

K

clock

converting a JK flip-flop to a T flip-flop

T



JK flip-flop

J = D

K = Dʹ

Qnext = J Qʹ + Kʹ Q = D Qʹ + D Q  = D

Qnext = D 

>

J

Qʹ

Q

K

clock

converting a JK flip-flop to a D flip-flop

D

Q   Qnext J    K

0    0          0   x

0    1          1   x

1    0          x   1

1    1          x   0

excitation table



flip-flop conversions  - summary & web links

D to JK:   D = J Qʹ + Kʹ Q

JK to D:   J = D,  K = Dʹ

D to T:     D = T  Q

T to D:     T= D  Q

JK to T:   J = K = T

T to JK:   T = JQʹ + KQ

SR to JK:   S = JQʹ,  R = KQ

JK to SR:   J = S,  K = R

flip-flop conversions - part 1

flip-flop conversions - part 2

flip-flop conversions - part 3

flip-flop conversions - part 4

to be explored further in recitations

https://www.allaboutcircuits.com/technical-articles/conversion-of-flip-flops/
https://www.allaboutcircuits.com/technical-articles/flip-flop-conversions-part-ii/
https://www.allaboutcircuits.com/technical-articles/conversion-of-flip-flops-part-iii/
https://www.allaboutcircuits.com/technical-articles/conversion-of-flip-flops-part-iv-d-flip-flops/


excitation tables

Q    Qnext      T

0     0          0

0     1          1

1     0          1

1     1          0

T flip-flop

excitation tables are useful because we usually know what Q 

and Qnext should be, and wish to determine the proper inputs 

to the flip-flops

Q   Qnext       J    K

0    0          0   x

0    1          1   x

1    0          x   1

1    1          x   0

JK flip-flop 

Q    Qnext D

0     0          0

0     1          1

1     0          1

1     1          0

D flip-flop

Q   Qnext S    R

0    0          0   x

0    1          1   0

1    0          0   1

1    1          x   0

SR flip-flop

Qnext = D Qnext = T  Q

Qnext = J Qʹ + Kʹ Q Qnext = S + RʹQ

characteristic

equations

characteristic

equations



flip-flops  - summary Reference: A .F. Kana, DLD lectures (on Canvas)


